Services Available |
---|
The CWS655A is a wireless version of our CS655 soil water reflectometer. It has 12 cm rods and monitors soil volumetric water content, bulk electrical conductivity, and temperature. This reflectometer has an internal 922 MHz radio that transmits data to a CWB100A Wireless Base Station or to another wireless sensor. The 922 MHz frequency is used in Australia, Israel, and other countries worldwide.
The CWS655A has 12-cm rods that insert into the soil. It measures propagation time, signal attenuation, and temperature. Dielectric permittivity, volumetric water content, and bulk electrical conductivity are then derived from these raw values.
Measured signal attenuation is used to correct for the loss effect on reflection detection and thus propagation time measurement. This allows accurate water content measurements in soils with bulk ≤3.7 dS m-1 without performing a soil-specific calibration.
Soil bulk electrical conductivity is also derived from the attenuation measurement. A thermistor in thermal contact with a probe rod near the epoxy surface measures temperature. Horizontal installation of the sensor provides accurate soil temperature measurement at the same depth as the water content measurement. For other orientations, the temperature measurement will be that of the region near the rod entrance into the epoxy body.
There are situations when it is desirable to make measurements in locations where the use of cabled sensors is problematic. Protecting cables by running them through conduit or burying them in trenches is time consuming, labor intensive, and sometimes not possible. Local fire codes may preclude the use of certain types of sensor cabling inside of buildings. In some applications measurements need to be made at distances where long cables decrease the quality of the measurement or are too expensive. There are also times when it is important to increase the number of measurements being made but the datalogger does not have enough available channels left for attaching additional sensor cables.
Weather Resistance | IP67 rating for sensor and battery pack (Battery pack must be properly installed. Each sensor is leak tested.) |
Operating Temperature Range | -25° to +50°C |
Operating Relative Humidity | 0 to 100% |
Power Source | 2 AA batteries with a battery life of 1 year assuming sensor samples taken every 10 minutes (Optional solar charging available.) |
Average Current Drain | 300 μA (with 15-minute polling) |
Rod Length | 12 cm (4.7 in.) |
Dimensions | 14.5 x 6 x 4.5 cm (5.7 x 2.4 x 1.77 in.) |
Weight | 216 g (7.6 oz) |
Measurement Accuracies |
|
Volumetric Water Content | ±3% VWC typical in mineral soils that have solution electrical conductivity ≤ 10 dS/m. Uses Topps Equation (m3/m3). |
Relative Dielectric Permittivity |
|
Bulk Electrical Conductivity | ±(5% of reading + 0.05 dS/m) |
Soil Temperature | ±0.5°C |
Internal 25 mW FHSS Radio |
|
Frequency | 920 to 928 MHz |
Where Used | Australia and New Zealand |
FHSS Channel | 50 |
Transmitter Power Output | 25 mW (+14 dBm) |
Receiver Sensitivity | -110 dBm (0.1% frame error rate) |
Standby Typical Current Drain | 3 μA |
Receive Typical Current Drain | 18 mA (full run) |
Transmit Typical Current Drain | 45 mA |
Average Operating Current | 15 μA (with 1-second access time) |
Quality of Service Management | RSSI |
Additional Features | GFSK modulation, data interleaving, forward error correction, data scrambling, RSSI reporting |
Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.
The Wireless Sensor Planner is a tool for use with Campbell Scientific wireless sensors. It assists in designing and configuring wireless sensor networks.
Number of FAQs related to CWS655A: 18
Expand AllCollapse All
No. The equation used to determine volumetric water content in the firmware for the CWS655 is the Topp et al. (1980) equation, which works for a wide range of mineral soils but not for organic soils. In organic soils, the standard equations in the firmware will overestimate water content.
When using a CWS655 in organic soil, it is best to perform a soil-specific calibration. For details on performing a soil-specific calibration, refer to “The Water Content Reflectometer Method for Measuring Volumetric Water Content” section in the CS650/CS655 manual. A linear or quadratic equation that relates period average to volumetric water content will work well.
Damage to the CWS655 electronics or rods cannot be repaired because these components are potted in epoxy. A faulty or damaged sensor needs to be replaced. For more information, refer to the Repair and Calibration page.
Only the rods of the CWS655A should be buried. The body of the CWS655A was not designed for burial, and Campbell Scientific does not recommend burying it for the following reasons:
If a wireless option is desired for fully buried water content sensors, consider using a CR200X-series datalogger with CS650-L or CS655-L cabled sensors.
No. The abrupt permittivity change at the interface of air and saturated soil causes a different period average response than would occur with the more gradual permittivity change found when the sensor rods are completely inserted in the soil.
For example, if a CWS655 was inserted halfway into a saturated soil with a volumetric water content of 0.4, the probe would provide a different period average and permittivity reading than if the probe was fully inserted into the same soil when it had a volumetric water content of 0.2.
There are three reasons that NAN values are reported:
The CWS655-series sensors have several logical tests built into their firmware to ensure that the sensors do not report a number that is known to be erroneous. Erroneous readings are either outside the sensor’s operational limits or outside of published accuracy specifications.
A reported value of NAN does not necessarily mean that there is a problem with the sensor hardware. The conditions outlined below can lead to a value of NAN for volumetric water content.
Radio communication issue
When the CWB100 base station is about to poll a wireless sensor, it first populates the variable array specified in the data logger program with a NAN value for each field. Then, when a successful transmission of sensor data is received, those NAN values are overwritten with valid data. If the transmission is unsuccessful, all of the values for that sensor remain as NAN. This makes it easier to tell when there is an issue. Possible causes of a radio communication issue include:
Permittivity is greater than 42
The CWS655 calculates real apparent bulk permittivity of soil and then uses the Topp et al. (1980) equation to convert permittivity to volumetric water content. A permittivity value of 42 is the upper limit for making that conversion. This is equivalent to a volumetric water content of 0.52.
If the reported value for VWC is NAN but there is a numerical value for Pe, then volumetric water content numbers higher than 0.52 may be calculated by applying the Topp et al. (1980) equation or another chosen equation to the permittivity reading. This may be done in the data logger program or in post-processing software, such as a spreadsheet. Note that the Topp et al. (1980) equation is typically held to be valid for water content values between 0 and 0.55 m3 m-3.
Permittivity value is NAN
Because volumetric water content is calculated from the permittivity reading, conditions that cause the sensor to report NAN for permittivity will give the same value for volumetric water content.
To get accurate water content readings, a soil-specific calibration is probably required if any of the following are true:
For details on performing a soil-specific calibration, refer to “The Water Content Reflectometer Method for Measuring Volumetric Water Content” section in the CS650/CS655 manual.
Some users have obtained good results by applying a linear correction to the square root of reported permittivity before applying the Topp et al. (1980) equation. The linear correction is obtained by taking readings in saturated and dry soil and using volumetric water content measurements obtained from oven-dried soil samples to estimate actual permittivity.
A thermistor is encased in the epoxy head of the sensor next to one of the stainless-steel rods. This provides a point measurement of temperature at the soil surface. The temperature measurement is not averaged over the length of the sensor rods.
Because the reported volumetric water content reading is an average taken along the entire length of the rods, the sensor should be fully inserted into the soil. Otherwise, the reading will be the average of both the air and the soil, which will lead to an underestimation of water content. If the sensor rods are too long to go all the way into the soil, Campbell Scientific recommends inserting the rods at an angle until they are fully covered by soil.
The CWS655 works best when the rods are inserted into the soil as parallel to each other as possible. To make parallel pilot holes before installation, use the CS650G Rod Insertion Guide Tool. Minor deflection of a rod during insertion, such as when it contacts a small stone or root, may not affect the readings significantly. Major deflections, however, may cause the CWS655 to operate outside of published accuracy specifications, as well as to damage the sensor housing.
No. It is not possible to disable the logical tests in the firmware. If soil conditions cause frequent NAN values, it may be possible to perform a soil-specific calibration that will provide good results.
If permittivity is reported but the volumetric water content value is NAN, Campbell Scientific recommends a soil-specific calibration that converts permittivity to water content. This will take advantage of the bulk electrical conductivity correction that occurs in the firmware.
If both permittivity and volumetric water content have NAN values, it may be possible to perform a calibration that converts period average directly to volumetric water content.
For details on performing a soil-specific calibration, refer to “The Water Content Reflectometer Method for Measuring Volumetric Water Content” section in the CS650/CS655 manual. After a soil-specific equation is determined, it may be programmed into the data logger program or used in a spreadsheet to calculate the soil water content.
We've updated our privacy policy. Learn More